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Algebra is built upon strong arithmetic foundations, so a smooth transition from arithmetic to algebra is 
crucial. As part of the transition process to algebra, the meaning and use of letter symbols plays a critical 
role. Meanwhile, the lack of studies with teachers draws attention. Specifically, this study examines 
secondary school mathematics teachers' instructional practices related to the meaning of letter symbols in 
the transition from arithmetic to algebra. Through the use of a case study design, the study was conducted 
in the academic year 2021-2022. The study group consisted of six mathematics teachers from secondary 
schools. In-class observations and clinical interviews were used as data collection tools. Qualitative 
analyses were conducted on in-class observations of teachers. According to the findings of the study, the 
teachers made the transition from informal symbols to letter symbols rapidly, without adequately 
emphasizing the meanings of the letter symbols. Teachers' practices regarding the meaning of letter 
symbols should be guided by in-service trainings conducted in this regard.          
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1. Introduction 

The knowledge of arithmetic and algebra allows us to solve a wide variety of problems in our 
daily lives. The broadest and most applied field of mathematics is arithmetic, which involves 
performing four operations on known quantities in order to find unknown quantities, and 
formulating relationships between numbers in order to establish relationships between their 
values (Akkan, 2009). With the generalization of the relations and rules reached between numbers 
in arithmetic, the field of learning algebra has emerged (Vance, 1998). According to Kieran (1992), 
algebra is a tool that reveals number properties and numerical relations, enables the expression of 
quantities with symbols, and performs operations. At the same time, it is described as a tool for 
problem-solving and developing abstract thinking, a lesson taught at school (Dede & Argün, 2003), 
a bridge that provides a conceptual and theoretical transition between mathematics and other 
disciplines, a prerequisite, and a challenge for further education (Erbaş et al., 2009). In light of the 
significance of algebra in our lives, it is important that people learn algebra for their own benefit. 
Van Amerom (2002) states that the foundations of symbolization, generalization, and algebraic 
thinking are laid together with arithmetic and that the foundations of algebra will be laid with 
solid learning of arithmetic. Based on this information, it is understood that making sense of 
arithmetic is the beginning of algebra learning (Watson, 2009). On the other hand, it is stated in the 
studies that students face difficulties due to the differences between arithmetic and algebra 
(Akkan, 2009; Gürbüz & Toprak, 2014; Kieran, 2007; Van Amerom, 2002). The most common 
difficulties experienced by students in the transition from arithmetic to algebra can be listed as the 
meaning and use of symbols and letters, problem solving, and generalization (Akkan, 2009). It is 
noteworthy that among these difficulties is the use of letter symbols in problem-solving and 
generalizing the results (Radford, 2006). Hence the component of making sense of letters forms the 
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basis of the difficulties encountered and is accepted as one of the critical points (Kieran, 1992). 
Letters are handled with different meanings and in different ways in arithmetic and algebra 
(Akkan & Baki, 2016a). In order to avoid problems with algebra in the future, it is essential to 
examine the transition process to algebra and to learn the correct use and meaning of letter 
symbols. The reason for the cognitive gap that occurs during the transition to algebra is the 
inability to perform operations on the unknowns. The solution process of arithmetic problems 
provides meaning and interpretation of the unknown, but it is important to examine how the 
unknown is related to the variable (Özgeldi, 2013). This transition from arithmetic to algebra will 
be easier if more than one solution strategy is used in different problem contexts before algebra 
(Akkan et al., 2012; Van Amerom, 2002). In the solution of the problems in the pre-algebraic 
process, besides reaching the result with four operations, the use of symbols may be required in 
cases where four operations are insufficient. Van Amerom (2002) mentions that the development 
of the pre-algebraic process can be achieved with arithmetic, informal symbolization, and algebraic 
thinking. The use of informal symbols in problem solving prior to algebra facilitates the transition 
to algebra by providing the beginnings of abstract thinking (Linchevski, 1995). For this reason, 
applications for problem solving also play an important role in the transition to algebra. 
Considering that the reason for the cognitive gap that occurs during the transition to algebra is the 
inability to perform operations on the unknowns (Özgeldi, 2013), it is understood that the concepts 
of variable and unknown play an important role in the transition process. Considering the 
importance of these concepts in algebra, it turns out that it is important to prepare learning 
environments in such a way that difficulties and mistakes can be avoided (Yıldız et al., 2015). 
However, it is stated that one of the most effective factors in preventing the difficulties 
encountered in learning environments and facilitating the transition process of students to algebra 
is the teacher's knowledge of the subject of arithmetic, algebra, and the transition between these 
two fields (Akkan et al., 2017). In this sense, it is determined that teachers play an important role in 
the meaning of letter symbols that play a key role in the transition to algebra. On the other hand, 
while the difficulties experienced by students, their algebraic understanding and algebraic 
thinking levels are generally discussed in studies (Akkan & Baki, 2016b; Boulton-Lewis et al., 1997; 
Çelik & Güneş, 2013; Nayıroğlu, 2022; Ursini & Trigueros, 2011), it has been seen that the studies 
conducted with the teachers are limited in number (Asquith et al., 2007; Baş et al., 2011; Gürsoy, 
2019; Yıldız & Yetkin-Özdemir, 2021). For students to overcome their difficulties in learning 
algebra, it is important for teachers to practice how to teach the subject. Hence, this study aimed to 
examine the teaching practices of secondary school mathematics teachers in the transition process 
from arithmetic to algebra in the context of the meaning and use of letter symbols.  

In this context, this research seeks answer to the following question: "What are the instructional 
practices of secondary school mathematics teachers in the context of the meaning and use of letter 
symbols in the transition process from arithmetic to algebra?"  

2. Theoretical Framework 

Kaput (2008) states that algebraic thinking consists of three basic components. These three 
components are addressed as generalized arithmetic, functional thinking, and modeling 
languages. In the content of these concepts, it is seen that basic algebra concepts such as equality, 
equivalence, symbols, variables, unknown quantities, expression are intertwined with the meaning 
and use of letters in the transition process to algebra. Therefore, the learning and teaching of the 
meaning and use of letters are also closely related to the development of algebraic thinking. The 
relationship between algebraic thinking and the meaning and use of letters is illustrated in Figure 
1. 
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Figure 1 
The relationship between algebraic thinking and the meaning and use of letters 

 

Teaching activities related to letter symbols are discussed under two headings in the studies in 
the literature. Rather than letter symbols, informal symbols used initially. In this process, 
geometric shapes or punctuation symbols are used to represent unknown or changing quantities 
informally. The formal use of letter symbols includes representing unknown or changing 
quantities with letters such as x, y, z, a, b, c... etc. The transition from informal symbols to the use 
of formal symbols is discussed in the transition from arithmetic to algebra. In this context, this 
study, which deals with the transition process to algebra, benefits from the classification that is 
based on the meaning of letter symbols. This classification is given in Figure 2. 

Figure 2 
The use of letter symbols in the transition from arithmetic to algebra 

 
The use of informal symbols is important in preparing students for algebra and facilitating the 

transition to algebra (Akkan et al., 2011, 2012). Geometric shapes and punctuation symbols used to 
represent unknown or changing quantities become less useful over time. For this reason, it is 
necessary to use of letter symbols rather than informal symbols (Akkan, 2009). 

3. Method 

Qualitative research method was used in this study, in which the classroom practices of the 
teachers during the transition to algebra were examined in the context of the meaning of letter 
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symbols. Since this research examined the practices of the teachers in depth with a small number 
of samples, the case study design has been adopted.  

3.1. Participants 

The study group of the research consists of 6 secondary school mathematics teachers working in 
the eastern black sea region of Türkiye. To ensure diversity, the sample was selected considering 
the criteria of years of experience, holding a bachelor's degree and a master's degree, and working 
at a village school or district centre. The teachers in the study group were coded as T1, T2, T3, etc. 
Demographic information of participating teachers is shown in Table 1. 

Table 1 
Participants’s demographic characteristics 
Participant Professional experience Education status Location of the school Having been trained in algebra 

T1 15 Bachelor's degree County Town No 
T2 9 Master's degree County Town Yes 
T3 3 Bachelor's degree Village School No 
T4 3 Bachelor's degree Village School No 
T5 9 Master's degree County Town Yes 
T6 7 Bachelor's degree County Town No 

3.2. Data Collection Tools 

In-class observations and clinical interviews were used as data collection tools in the study. 
Together with the observations, the observation form prepared in accordance with the purpose of 
the research was used. 

3.2.1. Observation form 

To examine the in-class practices of teachers regarding the meaning of letter symbols, an 
observation form consisting of 15 indicators for these practices was prepared. These indicators 
have been determined with the help of studies on transition to algebra and algebraic thinking in 
the literature. Expert opinions were taken into consideration for the determined indicators. In 
order to determine whether the indicators were suitable for the purpose, a pilot study was 
conducted. As a result of reviewing the pilot application with experts, a final observation form was 
designed. These indicators are shown in Table 2. 

Table 2 
Indicators for the meaning of letter symbols 
Code  Indicators 

G1 Performing numerical calculations without using symbols 
G2 Performing arithmetic operations without taking the symbol into account 
G3 Drawing attention to the importance of informal symbol use 
G4 Preparing the student using informal symbols 
G5 Using physical representations or virtual manipulatives for symbol use 
G6 Emphasis on comparison of informal symbols and letter symbols 
G7 Engaging in activities that the letters represent different dimensions, such as the abundance or 

quantity of an object 
G8 Allowing the use of different symbols 
G9 Emphasizing that the letters used can always correspond to a numeric value 
G10 Drawing attention to possible misconceptions about the use of letters 
G11 Enabling students to discuss different answers about the use of letter symbols 
G12 Presenting symbolic and everyday language in a context 
G13 Identifying a symbol for varying quantities in a problem situation 
G14 Expressing the related quantities with the same symbol in the problem situation 
G15 Emphasizing the different meanings of formal uses of letter symbols 
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Prior to algebra acquisitions, the use of letter symbols was also necessary as part of problem 
solving activities. This study also examined the teaching practices discussed with the expert 
opinion regarding the acquisition of problem solving skills. The problem solving acquisition 
indicators were identified as G1, G2, G3, G4, G13, and G14. In light of these acquisitions, it was 
decided to choose a 6th grade level. The time spent by teachers on algebra and problem-solving 
acquisitions is reflected in the observation times. Table 3 shows the durations for observations. 

Table 3 
Data collection durations 

Teachers Observation durations (Total=32) 

T1 Problem Solving– 2-hour lesson 
Algebra – 3-hour lesson 

T2 Problem Solving – 2-hour lesson 
Algebra – 3-hour lesson 

T3 Problem Solving – 2-hour lesson 
Algebra – 3-hour lesson 

T4 Problem Solving – 2-hour lesson 
Algebra – 3-hour lesson 

T5 Problem Solving – 2-hour lesson 
Algebra – 4-hour lesson 

T6 Problem Solving – 2-hour lesson 

Algebra – 4-hour lesson 

 
The algebra acquisitions for which the teachers' practices were examined were as follows: 

 Writes an algebraic expression suitable for a verbally given situation and a verbal situation 
suitable for a given algebraic expression 

 Calculates the value of the algebraic expression for different natural number values that the 
variable can take 

 Explains the meaning of simple algebraic expressions 

 Solves and constructs problems that require four operations with natural numbers 

Considering that the use of informal or letter symbols is also included in the problem-solving 
acquisitions, it was decided to observe the practices for the last acquisition.  

3.2.2. Interview 

As part of this study, clinical interviews and classroom observations were conducted to examine 
secondary school mathematics teachers' practices during the transition to algebra and practices 
that were difficult for observers to understand. Teachers were interviewed with 11 questions. In 
order to gather information regarding teachers' algebra knowledge, their explanations of letter 
symbols, and their plans for teaching algebra, the questions were arranged accordingly. For 
example, the form included questions like ‘What is the variable and the unknown? Can you 
define? What kind of activities do you do to teach these concepts?’ This examination analyzed how 
they handled questions and concepts. Additional questions were also asked to each teacher about 
the situations that emerged in his/her own lessons. 

The teachers who took part in the study were asked to ask their students questions after they 
completed their problem-solving tasks. Researchers chose this particular question from a study on 
the transition to algebra in the literature so that it can be solved using algebraic notation as well as 
symbols (Akkan et al., 2012). As part of this process, it was important to observe the students' 
preferences regarding the algebraic method, as well as the solution methods. In order to confirm 
the results obtained from the classroom practices and see the students' thoughts, the answers of the 
students were analyzed. 
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3.3. Data Analysis 

Teachers' in-class observations were analysed qualitatively by coding within the scope of the 
observation form created. The interviews in which the teachers' knowledge about the teaching 
practices and letter symbols in the transition process from arithmetic to algebra were audio-
recorded. Each teacher's lesson was transcribed over the indicators marked on the observation 
form. Based on the frequencies obtained for each indicator, the percentages were calculated. 
Transcripts were prepared based on interviews conducted with six teachers using voice 
recordings. A number of prominent themes were uncovered as a result of coding these data. These 
findings were presented using direct quotations from data obtained during the observations, 
accompanied by sample expressions and interviews. 

Approximately 30% of the courses were sent to another researcher for validity and reliability 
studies. The comparisons showed that an 88% consensus was reached. 

4. Results 

The problem-solving achievement discussed in the transition to algebra is examined by using some 
of the indicators determined for algebra achievement, so the findings of this section are organized 
into two main sections, problem solving outcomes and algebra outcomes. 

4.1. Results regarding Problem Solving 

Table 4 provides the frequencies and percentages of teachers' practices related to the problem-
solving achievement based on the indicators. 

Table 4 shows that the G1 is the most frequently used indicator with a rate of 58%. In terms of 
coded indicators, G3 and G4 account for the least coverage (2% each). T5 with a rate of 28.6% had 
the highest level of practice when the total rates of all the indicators included by the teachers were 
examined. Compared to this, T4 was the teacher who placed the least emphasis on indicators, with 
10.2%. All teachers dealt primarily with the G1 indicator in their problem-solving practices. 

Within the scope of the G1 indicator, the problems covered in lessons are generally those that 
do not require symbols and can be solved using four operations. With a rate of 58%, this is the 
most frequently used indicator among teachers. Due to the fact that problem-solving performance 
happens before algebra acquisitions, teachers should focus on informal symbols within this 
indicator. G13 and G14 indicators, which include informal symbols, are often dealt with by 
teachers after G1, in this context. Using both informal symbols and four operations, the T5 solved a 
problem. Figure 3 includes a section of the T5's lesson. 

Figure 3 
Two different solutions of T5 on the smart board 
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As a result of the arithmetic solution, the teacher reminds the students that Ceren has a balloon 
count of based on Zehra's balloon count. Based on this statement, it is possible to calculate Ceren's 
balloon number if Zehra's balloon number is known. Furthermore, it emphasizes the relationship 
between the number of balloons. Using a box symbol, the teacher illustrates the relationship 
between Zehra's balloon number and the number of balloons. While stating that the problem 
cannot be solved with arithmetic operations, he makes one feel the need to use a box symbol if 
larger numbers are involved. Consequently, since the teacher refers to informal symbols for 
changing quantities, the teacher's statements fall under the G13 category. It was evident from the 
answers given by the T5’s students to the question that they attempted to use informal symbols. 
Figure 4 shows an example of a student's answer to the question. 

Figure 4 
Sample answer of a student 

Examining the student's answer, it is evident that he represents cows with a box symbol and 
sheep with the sum of two boxes. The result he found represented the box symbol and indicated 
the numbers of both sheep and cows. 

T1 also indicated that problems including four operations were an important source of students' 
difficulties. Although he stated this, it seems only one example was used in which the operational 
process was more weighted in comparison to other examples. An excerpt from this interview can 
be found below. 

Researcher: Which mathematics subjects and concepts should students know to understand the 
subject of algebraic expressions? What should be their prior knowledge? 
T1: Of course, you know the most important thing in algebraic expressions is reading 
comprehension, of course you will process what you understand. That's where you're going to call 
the unknown x, the student learned that, but they must be able to set up a proper equation, that's the 
most important thing for us. That's why we need a good reading comprehension skill. And besides, 
mathematical operations which is indispensable. Negative and positive signs, multiplication and 
division… the child should be able to address these. 

According to the teacher's answer, students should work on problems involving four 
operations. Therefore, it can be assumed that the teacher understands what students should know 
as prior knowledge. Although the teacher gives examples that use arithmetic operations in the 
lesson, he seems to use only one problem that has a painful solution process. Due to the teacher's 
lack of space for arithmetic operations, students were expected to make solutions by using 
symbols in the questions given. Based on the solutions given by the students, it was obvious that 
they were mainly trying to come up with arithmetic solutions. 

4.2. Results Regarding Algebra 

Table 5 provides the frequencies and percentages of teachers' practices related to the algebraic 
achievement based on the indicators of letter symbols.  
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A review of Table 5 shows that all the teachers included the indicator coded with G13 with a 
rate of 37.6% in algebra outcomes. G13 is the most commonly addressed indicator by T1 (22%). As 
can be seen, G2 and G4 appear only once (0.6%). It is noteworthy that the teachers did not include 
practices for the indicator coded with G11 and indicator coded with G15. In terms of percentage, 
the G7 and G8 indicators followed closely, while the G2, G3, and G4 coded indicators had the least 
percentage. According to the table, the teachers' practices are largely focused on certain indicators, 
while the practices related to letter symbols are limited. According to a comparison of the practices 
by the teachers based on frequency and rate, T2 and T4 demonstrate equal number of applications 
with a 21.2% ratio. Despite showing 12.1% practice, T1, who covered most of his indicators within 
the scope of the G13 indicator, included only four indicators. Teachers also handle indicators 
differently in terms of frequency. In terms of indicator diversity, T1 lags behind the other teachers. 
Indicator diversity is seen to be the highest in T2’s practices. 

Only T2 paid attention to the indicator coded with G2. In his response to a question asked in the 
interview, T2 preferred to use the inverse operations similarly to the way he did in the classroom. 
As part of the question asked, the teacher used an informal symbol, from which the reverse 
processing method was used to reach the answer. Consequently, the teacher's solution path in the 
classroom and in the interview are parallel. A part of the interview with T2 is given below. 

Researcher: In a group of 60 people consisting of women, men and children, the number of women is 
equal to 3 times the number of men. As there are 12 children in this group, how many boys are 
there? 
How would you explain the solution of this problem to the students? 
T2: We solve similar questions in natural number problems as well. If the number of women is 3 
times the number of men, here is a box for one and 3 boxes for the other. I start with a box and then 
move on to an algebraic expression. If 12 out of 60 people are children, I will find 48 out of 60 by 
subtracting 12. One box and 3 more boxes make up 4 boxes. We think that whichever number we 
multiply by 4 becomes 48. That's how we'll find out. 

It is evident from the teacher's explanations that he solved the problem asked in the interview 
in the same way he solved the questions in the classroom. It is noteworthy that the teacher also 
uses informal symbols in solving the problem. Accordingly, the observations of the teacher and the 
data from the interviews are parallel. Rather than addressing it in class, teachers make use of the 
reverse processing method. According to the clinical interview with T1, the teacher shows a similar 
solution approach when the same question is asked. 

There has been relatively little attention paid to the G5 indicator. In one of the classrooms where 
this indicator was addressed, T3 made a model by writing the x and y letters on colored cartons. It 
is also noteworthy that the x and y symbols were written differently. Two symbols representing 
different sizes are represented by letters with different shapes. 

Figure 5 
The representations T3 used in the classroom
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A close examination of T3's lesson reveals that he uses a concrete material to represent the 
letters he uses in his lesson. In order to solve the examples, students used these materials. As a 
physical representation, these concrete materials are considered part of the G5 indicator. Based on 
an examination of Figure 5, it is evident that the teacher has chosen papers in different colours and 
shapes representing x, y, and numbers. The following section explains why the T3 teacher used the 
material in this way. 

Researcher: You used different shapes and colours of paper for x, y and numbers. What is the reason 
for this? 
T3: I did this to show that the x and y symbols do not represent the same number. I also used it to 
show whether the x and y symbols can be added or subtracted. 

During the clinical interview, it was determined that T3 used models in a variety of colours and 
shapes to teach similar terms. This situation is also useful for students to understand that the 
symbols x and y do not represent the same quantity, to enable them to understand why the 
symbols x and y cannot be summed up or subtracted in addition and subtraction operations in 
algebraic expressions. 

Except for one teacher, all teachers included the G10 indicator in their lessons. As part of his 
interview, T1 mentions that certain applications were included in order to prevent a certain 
misconception. Different variables should be used, for instance. When observed, however, these 
practices are not incorporated into his lessons. An excerpt from this interview is provided below. 

Researcher: What kind of feedback do you give to a student when he comments on a question whose 
solution is a=8 in the form of “But my teacher came out a=5 in the previous question”? Why do the 
student thinks this way, in your opinion? What kind of teaching process would you follow to correct 
this mistake made by the student? 
T1: I told you at first, for example, why did we say x? There may be conceptual misconceptions, such 
as why this was x, why this happened. That's why the beginning of the topic is very important. We 
called the variable x, but it could have been y, it could have been z. I think we need to do exercises to 
ensure that this can be different in any case. That's why it always means x, it means y, I don't think 
it's right either. That's why I try to give a different variable in each problem as much as I can. 

To avoid students from having the misconception that a variable can only be equal to one value, 
the teacher instructs them to use a different variable in each problem. It was revealed, however, 
that he used only one variable in all of the problems and solutions he presented in his lectures. 

It is noteworthy that G15, an important indicator of the algebra transition, was not covered. At 
the sixth grade level, the concepts related to understanding letter symbols are variable and 
unknown when examining the concepts discussed in the transition from arithmetic to algebra. 
Although letter symbols have meanings other than variable and unknown, these two concepts are 
emphasized at the secondary school level. What is expected from teachers is to present the 
concepts of variable and unknown to the students correctly. Consequently, teachers were asked a 
question about this indicator during interviews. Below is a portion of the T1's interview. 

Researcher: After you introduced algebraic expressions as “expressions containing at least one 
variable and one operation” in the lesson, you expressed it as “the other name of the variable is also 
unknown”? Can you explain why you expressed it this way? Is the variable the same as the 
unknown? 
T1: Yes, I think both concepts have the same meaning. I used the concepts of variable and unknown 
because I wanted the children to be familiar with both, as both concepts connote the same meaning. 

In light of the fact that the teacher taught the concept of variable and unknown as the same, a 
question was asked to the teacher. A closer examination of the teacher's answer reveals that he 
believes the two concepts have the same meaning. This shows that the teacher does not 
understand the difference between these two concepts. Similarly, it was observed that T5 taught 
the concepts of unknown and variable as the same concept in his lesson. However, it was 
determined during the interview that T5 understood the differences between the two concepts. As 
an example, here is a transcript of the interview. 
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Researcher: What do the variable and unknown mean? Can you define? What kind of activities do 
you do to teach these concepts? 
T5: Variables are expressions that we can give value and that can take different values according to 
the value we give. We can manipulate variables as we wish. However, the unknown is a single 
correct value that can satisfy the mathematical equation. We can teach the concept of variable by 
giving students a pattern situation and asking them to express the relationship according to the 
number of steps and to find them in the desired different steps based on this relationship. 
Researcher: “Or 8a. This algebraic expression means 8 times a. And you can replace a with any 
number you want. An unknown here. So, it's variable.” These were your words in the lesson. Is the 
unknown also a variable? Can you explain what you mean here? 
T5: I used this statement because the expressions “8a” and “8+a” were confused by the students. Of 
course, the variable and the unknown are not the same thing. However, while a in expression 8a 
represents the unknown in an equation, it represents the variable in the general term of a number 
pattern. 

A review of the teacher's interview reveals that the teacher understands the difference between 
a variable and an unknown and explains both concepts in detail. In response to a question about 
the lesson's situation, he explains that the letter's meaning depends on its location, and he tries to 
convey this through his expression. In the classroom, however, these concepts may be expressed in 
a way that may cause students to misunderstand. As a result, it is obvious that the teacher did not 
emphasize enough this distinction during the lesson. 

5. Discussion and Conclusion 

According to the findings of the present study, teachers typically referred to G1 as "performing 
numerical calculations without using symbols" as a problem-solving outcome. According to their 
practices, teachers prefer problems for which the result can be easily discovered using four 
operations. Due to the fact that successful transitions to algebra are based on solid arithmetic 
foundations (Akkan et al., 2011), it may be beneficial to include problem solving in the transition. 
Due to the importance of arithmetic in the transition to algebra, and the fact that students often 
struggle with arithmetic operations and four-operation problems, teachers may attempt to 
improve students' arithmetic skills by emphasizing four operations in algebra problems. This 
emphasis appears to be effective taking the highest number of G1 indicator into consideration. 
Algebra problems are often difficult for students to solve (Dede, 2004; Kartal, 2000; Trigueros et al., 
2012). The reason for this is students' inability to interpret the problem correctly and their lack of 
procedural and conceptual knowledge (Dede, 2004; Kartal, 2000; Trigueros et al., 2012). As the G1 
indicator was given less room in algebra objectives, it was expected that G2 would be emphasized. 
The G2 indicator, however, received the least amount of space in algebra objectives. Even though 
the teachers used symbols to solve problems, they emphasized four operations. According to 
Akkan et al. (2012), teachers should allow students to solve problems using symbols when 
transitioning to algebra. Furthermore, it was determined that students should be helped to find 
their own solutions using symbols. 

G13, which refers to 'Determining a symbol for changing quantities in a problem', and G14, 
which refers to 'Expressing related quantities with the same symbol in a problem', are related each 
other. Informal symbols should also be used to represent related expressions in the problem. The 
results also showed that teachers give equal weight to G13 and G14 indicators in their practices. 
Unlike the other teachers, T5 used symbols as additional ways to solve problems after arithmetic. 
In this way, students can compare arithmetic and symbolic solutions to the problem. This type of 
structure is more important to consider as it will help students in their transition to algebra by 
allowing them to see both solutions. In addition to arithmetic solutions, Akkan et al. (2012) noted 
that teachers' use of pre-algebraic solution strategies ensure a successful transition from arithmetic 
to algebra. In this way, studies highlighted to the importance of using different solution strategies 
(Altun & Sezgin-Memnun, 2008; Arıkan & Ünal, 2012). Furthermore, in their study, Sun-Lin and 
Chiou (2019) found that students' comparison of algebraic problems and their solutions had a 
positive effect on their learning. There are studies (Silver et al., 2005; Ziegler & Stern, 2014, 2016) 
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which have similar results.  At the same time, it has been mentioned that students should be able 
to use symbols as a language to explain their thoughts before the transition to algebra (Akkan et 
al., 2012). During the transition to algebra, teachers should allow students to use informal and 
lettered symbols to represent certain situations and adopt them.  The way teachers addressed 
indicator G13 in the classroom varied from teacher to teacher, despite the fact that they frequently 
included it in their practices. After reminding them of informal symbols, some teachers used the 
letter symbols directly instead of transitioning between them. Additionally, it is recommended that 
informal symbols be reviewed before moving on to letter symbols. In terms of the outcome of 
problem-solving, half of the teachers (f=3) recalled informal symbols. According to the other 
teachers interviewed, informal symbols were used in the 5th grade and letter symbols were 
switched directly to the 6th. The literature indicates, however, that switching to letter symbols 
after adequately addressing informal symbols is more effective than teaching algebra traditionally 
(Nayıroğlu, 2022). On the other hand, Akkan (2009) emphasized that students should have an 
opportunity to symbolize certain situations with informal symbols before moving on to algebraic 
concepts. Yıldızhan and Şengül (2017) assert that beginners who encounter algebraic expressions 
for the first time may be confused by a quick transition without sufficient knowledge of letter 
symbols. Students may be unable to understand letter symbols if rapid transition instruction is 
included in practice. Despite expectations that teachers would refer to G13 and G14 equally, in 
their practices, G14 ranked lower than G13. In algebraic expressions, symbols were used, but they 
were not applied to quantities related to the expressions. While teachers were expected to refer to 
G13 and G14 at the same rate, it was observed that they listed G14 with a lower percentage in their 
practices. It was observed that teachers included the use of symbols in algebraic expressions, but 
they did not use the same symbol to represent the relevant quantities. A possible explanation is 
that the focus during algebra transition is on translating verbal expressions into algebraic 
expressions. Literature defines functional thinking as being able to connect related quantities. 
However, the literature suggests that the development of functional thinking ensures the transition 
from arithmetic to algebra (Blanton et al., 2015; Kabael & Tanışlı, 2010; Warren et al., 2006). A 
quantity is commonly represented with a letter symbol by teachers in this study. Nevertheless, 
their practices of using the same symbol for related quantities proved to be incomplete. This may 
result in difficulties in the transition to algebra when limited application of this indicator leaves 
out functional thinking, which is an integral part of algebraic thinking. 

Despite the fact that G7 refers to letters representing dimensions such as multiplicity or quantity 
of an object, teachers did not include enough of this in their practices. As a result, students were 
not encouraged to understand what the letter symbols meant. The significance of letter symbols for 
indicating multiplicity and quantity was not adequately addressed. According to researchers, this 
situation will lead students to learn letter symbols exclusively for the meaning of objects. 
According to Akkan and Baki (2016b), students will better understand that numerals are 
represented by letter symbols if they focus on the multiplicity or quantity of the letters. Teachers 
should also have practices relating to G7 in this sense. These practices should also address 
students' misconceptions or misunderstandings about what letter symbols mean. It is frequently 
mentioned in literature that students have difficulties with letter symbols, and their 
misunderstandings must be developed in algebra classes (Bozkaya, 2021; Şahin & Soylu, 2011). 
This is where G10 indicator as pointing out possible misconceptions about the use of letters comes 
into play. However, it has been observed that teachers do not create a discussion environment for 
the misconceptions formed during class. Rather than making the student think, teachers give 
straight explanations. Furthermore, a teacher ignores students' mistakes. Similarly, Şahin and 
Soylu (2019) found that teachers' teaching practices regarding to overcome misconceptions were 
not sufficient. In the literature, some studies report similar results (Ball, 1988; Şahin et al., 2016). 

In their algebra lessons, teachers failed to emphasize the different meanings of letter symbols 
according to G15. In order to develop students' algebraic thinking within the G15 indicator, 
teachers are expected to know the meanings of letter symbols (Akkan, 2009; Uzun, 2021). Uzun 
(2021) drew attention to the different meanings of letters. Also, studies highlighted that 
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emphasizing the meaning of letter symbols such as variable and unknown in learning 
environments is an important process for students' algebraic understanding, so teachers should 
make sure that this is brought to their attention (Asquith et al., 2007; Bardini et al., 2005; 
Küchemann, 1978; Stacey & MacGregor, 1997). However, teachers seem to use variables and 
unknowns in the same sense in their lessons. As a result, the teachers' practices were not 
considered as supporters of the G15. 

6. Suggestions 

There has been a lack of emphasis placed on the four processes by teachers as well as a lack of 
consideration given to different solutions strategies. The transition to algebra, however, indicates 
strong arithmetic foundations. It is therefore proposed to emphasize activities involving four 
processing skills as part of the transition to algebra. A transition to algebra is more likely to be 
successful if informal symbols are established first, followed by letter symbols. Teachers should be 
trained on how to use informal symbols in the transition to algebra through informative in-service 
training. Teachers should spend more time discussing misconceptions in the literature when 
teaching algebra because algebra is intrinsically prone to misconceptions. In addition to teachers, it 
is suggested that teacher candidates should be made more aware by focusing on teaching about 
misconceptions in the undergraduate education process, and that training should be provided to 
give feedback to students who have made mistakes or errors during the course. It might be 
possible to study the effects of incorporating applications for the transition process from arithmetic 
to algebra in primary school teachers, in line with literature that indicates algebra can be taught at 
an early age. Studies can be conducted to investigate the effect of teachers' misconceptions in the 
transition from arithmetic to algebra. Additionally, it was found that teachers with a Master's 
degree are still unable to understand letter symbols. The meaning of letter symbols should be 
addressed in algebra courses during graduate education in this direction. Teachers were found to 
lack knowledge of letter symbols' meanings in the interviews. During undergraduate algebra 
courses, pre-service teachers should focus on activities that teach different meanings of symbols 
with more letters.  
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